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The field excited by a moving oscillating source in a two-dimensional linear medium with dispersion (for example, a source of 
surface waves) is considered. It is assumed that the velocity of the source is equal to the group velocity corresponding to its 
oscillation frequency (takir~g the Doppler shift into account), i.e. resonance occurs. The asymptotic form of the wave field in the 
far zone for long time t is described. In particular, in the neighbourhood of the zero there is a resonance zone in which the wave 
field is of the order of unig¢ or higher and the size of which increases as t 2/3 in critical directions, i.e. in directions perpendicular 
to the dispersion curve at it,.~ point of self-intersection. In directions which differ from the critical direction, the size of the resonance 
zone increases as t ~:2. The case of a degenerate stationary point of the dispersion function is also considered. A sharper resonance 
then occurs and the field irLcreases as t 1/6. The three-dimensional problem is briefly considered. © 1998 Elsevier Science Ltd. All 
rights reserved. 

In the general  theory of fields, excited by oscillating wave sources, it is assumed [1, 2] that steady oscillations excited 
by a source which oscillates at a frequency o0, are described by the Fourier  integral 

q = exp(ito0t)~ ~ F (,jL' I't)exp(-i(Xx+~tY))arhdla (0.1) 
B(o 0, ~., ~t) 

(the two-dimensional  problem is considered).  Here  B(o~, ~, IX) = 0 is the dispersion equation. In other  words, it 
is assumed that  the wave field in the medium considered can have the form of a plane wave exp i (o t  - Xx - Ixy) 
only if B(o ,  L, IX) = 0. 

If  the oscillating souice moves uniformly and rectilinearly with a velocity V = (Ix, Vy), the steady field in a system 
of coordinates  ~c = x - V j ; }  = y - Vyt, moving together with the source, is also described by integral (0.1), i fx  and 
y are replaced by;c,} in the exponent of the exponential function, and the dispersion function B(o0, L, IX) is replaced 
by B(co0, X, p) = B(o0 - VxX - Vy~t, X, IX). 

When  evaluating integral (0.1) the problem of regularization arises, i.e. the problem of how to understand integral 
(0.1) in the ne ighbourhood of the zeros of the function B(o0, X, ix). Natural  physical considerations,  which reduce 
to the fact that  the inflow of energy from infinity is excluded, lead to the radiat ion principle, according to which 
integral (0.1) must be anders tood  as the limit [1, 2] 

q = ¢~moexp(io)0t)~S F(2L, I.t)exp- i(Xx +Sty)) aeLdl~ (0.2) 
e ( ~  0 - / e ,  ~., It) 

Below we consider  the case when the curve B = 0 has singular points at which the part ial  derivatives of the 
function B with respect  to ~ and ix vanish. The integral on the right-hand side of (0.2) then increases as In ~ as 
e --~ 0. We will show that in this case steady oscillations do not exist in general. If the oscillating source is disconnected 
and mot ion  begins a t  a certain instant of  t ime to, then, as t ~ 0% the field does not  tend to an expression of  the 
form exp(io0t)q(x, y) ,  but increases logarithmically. The reason is that  when there is a singular point  L = L0, IX = 
Ix0 on the dispersion curve the group velocity of the oscillations with frequency o0 is zero (in a moving system 
of  coordinates  x , y  and taking the Doppler  frequency shift into account). Hence, at a fixed point  of  observat ion 
x = const, y = const lit a certain t = t 1 > to, the oscillations excited for all t in the interval to < t < t I arrive with 
the same phase and are summed in modulus, i.e. the phenomenon of  resonance occurs. Here,  as will be shown 
below, for any medium and any point L = L0, IX = ~ we can choose the velocity V o~ motion of  the source and 
the frequency c00 of  it,,~ oscillations such that  this point is a singular point of  the curve B = 0 and the phenomenon  
of resonance occurs. 

The motion of an oscillating source of  surface waves with a resonance velocity has been considered in the case 
when the spectral  density F ( L ,  IX) at the singular point Z. = ~0, ix = ix0 of the dispersion curve vanishes [3]. No 
storage effects therefore  arise here and the field approaches a finite limit as t --* o~. 

Below we find the asymptotic form of the far field for large values of t in the case of resonance and we write 
out  expressions for the logarithmically increasing field component .  The three-dimensional  problem is briefly 
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considered. In this case the field approaches a finite limit as t ~ oo, but, nevertheless, the effects of resonance and 
field storage lead to a qualitative change in the behaviour of the field in the far zone. 

1. I N T E G R A L  R E P R E S E N T A T I O N  O F  T H E  F I E L D  
O F  A M O V I N G  S O U R C E  

We will consider  a m e d i u m  in which the field of  the source q, with a t ime-dependence  of  the fo rm 
6(0 has the fo rm 

q(t, x, y ) = ~  F(~,, g)exp i ( -Lx-gy+t to (~ , ,  g))dkdl.t (1.1) 

The functions F(~., ~t) and toQ., la) depend on the problem considered. For example, in the Cauchy-Poisson 
problem for surface waves on deep water (q(t, x, y) is the height of the free surface) Green's function consists 
of two terms of the form (1.1) with to = +_.'~(kg + k3y), where k = ~/(~2 + ~t2), g is the acceleration due to 
gravity and 2, is the surface tension coefficient. 

Green's function for the field of internal gravitational waves can be represented in the form of the sum of modes; 
the field of the nth mode can also be represented in the form of the sum of two terms of the form (1.1) with to = 
_ % ( k )  and F = const %(k, z)%(k, Zo)ton(k)k -2, where %(k) and %(k, z) are the eigenvalues and eigenfunctions 
of the vertical eigenvalue problem [4] 

(p,, + k2 to -2 (N2(z )  _ co2)(p = 0 

with zero boundary conditions on the surface z = 0 and on the bottom z = - H  and with eigenfunctions normalized 
with weight N2(z). Here k is the free parameter and co is the spectral parameter, the square of the V/iis/iRi-Brunt 
frequency N2(z) = -gp~l(z)dp0/dz, 

Hence, in the three-dimensional problem of the propagation of internal gravitational waves in a layer - H  ~< 
z ~< 0 of stratified liquid, the depth z occurs as a parameter. The results obtained below on the growth of the field 
hold for any characteristic of the field of internal gravitational waves in the integral representation (1.1) in which 
the spectral density F(~., ~t) does not vanish at the singular point ~.0, P-0 of the dispersion curve B(~., ~t, COo) and, in 
particular, for the elevation. 

The  field W(t, x ,y)  of  the source,  moving with velocity V = (Vx, Vy), beginning at t = O, and oscillating 
with a f requency  too, can be wri t ten in the fo rm 

W(t, x, y)=exp(itoot)l~(t, f¢, y); 

l~(t, .~, Y) = j d~ ~ F(~,, I . t ) exp( i ( -~- I . t~+&(~, ,  ~t)x))d~l.t 
0 --** 

&(~,, ~t) = toot ,  I t ) -  Z,V~ - ~tV, - to o 

where  ~c = x - Vxt, y = y - Vyt is a system of  coordinates  moving toge ther  with the source.  
We will fur ther  consider  the asymptot ic  form of  W f o r  large t, r = ~](~c 2 + ;2) .  The  singular  points  of  

the  funct ions J} (;~., rt) and F(L, ~t) make  a contr ibut ion to this asymptot ic  form. For  example ,  for  surface 
2 2 waves the funct ion co(~., it) behaves  as ~/k when k = ~(~, + ~t ) ~ 0; for  internal  gravi ta t ional  

waves this funct ion behaves  as k as k ~ 0, while the ampl i tude  factor  FQ,, ~t) behaves  as k -1. 
It  can be shown that  the contr ibut ion of  the singular point  ~. = ~t = 0 to the as)~mptotic fo rm of  the 

far  field for  fixed t and r ~ oo is o f  the o rder  of  r -3/2 for  surface waves and r -1 for  internal  waves. 
We will dwell on the contr ibut ion to the asymptot ic  fo rm of  1~ of  such s ingu la rpo in t s  and  consider  
the t e rms  in the ~ y m p t o t i c  fo rm governed  b~ the singular points  o f  the surface co = 0, i.e. the values  
o f  ~., la for  which co is a regular  funct ion but  co = 0co/0~. = 0co/0~t = 0. 

As  was s ta ted above,  for  any ~.0, ~ we can choose a velocity V of  the s o u s e  and the f requency  of  its 
oscillations to o such that  the point  ~.0, ~0 is a singular point  o f  the surface to = 0. To do this we mus t  
put  

ato 0co 
v,  = ~ - ,  v,. coo = coO.o, • =T~'~; ~t0)-x0v~-u0vy 

where  the  derivatives Oto/O~. and Oto/Ola are taken at the point  ~ ,  ~ .  

We put  ~. = k0 + rl, ~t = ~ + ~. The  expansion in powers  of  rl, ~ has the fo rm 
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f~0(~, 0 -FT~, gO +~)---- 002(1"~' ~)'1"0}3(1~' ;)+O(112 "1"~2)2 (1.2) 

t02(rl, ~)= Arl 2 +B~2; o3(rl, ~)=Crl  3 +Dr12~+Ell~ 2 +F~  3 

(if necessary we rotate the L, ~t axes). Changing to the integration variables ri = ~, -- ~ ,  ~ = ~t -- PO we 

obtain 

W(t, F¢, ~)=expi(-~.o:2-~to~)~C'(t, 5¢, ~) (1.3) 

t 
1~'(t, :~, .~)= I J ~  

0 

J = J~ GO1, ~ ) e x p ( i ( - r l J - ~  +(°(rl, ~)x))dqd~ (1.4) 

~(~, ~) = &(Xo + rl, ~to + ~), G(~, ~) = F(Xo +'q, IXo + ~) 

We will assume tha.t the stationary point O = (0, 0) of the function cS(rl, 0 is non-degenerate, i.e. 
A ~ 0, B ~ 0. Using the ordinary technique of the expansion of unity, we will assume that G(rl, 4) is 
an infinitely differentiable finite function and that, in the region supp G, the function ~(rl, 4) is analytic 
and has a unique stationary point O. 

I fAB > 0, then O is an isolated point of the set fl  : ~. I fAB < 0, then O is a point of self-intersection 
of the curve t2; ~(rl, l;) = 0 we will assume in this case that the branches of t2 have non-zero curvature 
at 0, i.e. that the cubic polynomial co3(ri, 0 does not vanish on the tangents ~ = +-WI(-B/A) to the 

branches of fl. 

2. T H E  A S Y M P T O T I C  FORM OF I N T E G R A L  (1.4) 
WHEN r = ~/(;2 + ;2) >> 1, t = O(r) 

This asymptotic form is determined, first, by the stationary points of the phase function in triple integral 
(1.4) and, second, by theasym.ptotic form of the integral J as t ~ oo. The stationary points of the phase 
function * ( t ,  rl, 0 = -fix - ~ + co (11, ~)x are specified by the equations *'q = * ' ; ~  ~'~ = 0, whence 
ff)'q = ~¢/x, ~'~ = ~/t,  ~ = 0. It follows from these equations that for specifiedx~ y the stationary 
point P = (rl, 4) is a point on the curve t2 at which grad ~ is parallel to the vector (x ,y) .  If these vectors 
are directed opposite to one another, the value of t at the stationary point of the phase function is 
negative and there are no stationary points in the region of integration with respect to x in (1.4). If the 
vectors (x, y )  and grad ~ are in thesame  direction, the value of t at the stationary point is equal to 
(r, ~0 are polar coordinates in the x, y plane) 

X o = r l l grad (o( P) I; (~ = rcostp, ~ = rsintp) (2.1) 

If the origin of coordinates O is a point of self-intersection of the dispersion curve fl  (i.e. in expansion 
(1.2) AB < 0) and the direction ¢p approaches the direction of the normal to some branch of the curve 
fl  at the point O (i.e,. tgcp ---> +_q(-B/A)), then P --> O, I grad cS(P) I ~ 0 and t0/r ~ oo. We will consider 
this case below, but we will confine ourselves now to directions ¢p which differ from _arctg ~I(-B/A), 

+ arctg "J(-B/A) ~tnd to values t = O(r). 
Under  these conditions the asymptotic form of integral (1.4) is determined, first, by the contribution 

U1 of the stationary point (x0, P) (if this point falls in the region of integration), i.e. when t > x0 > 0 and, 
second, by the contribution U2 of the boundaries of the integration region, i.e. the planes x = 0 and x 
= t. However, the plane t = 0 makes no contribution to the asymptotic form of the integral (1.4), since 
for large values of r and fairly small values of x in the region supp G(rl, 0 the phase function in the inner 
integral in (1.4) has no stationary points and the integral decreases more rapidly for any power of r. 

U1 and U2 are calculated by the stationary-phase method. The contribution of the stationary point 

(x0, P) of the phase function is 

U l = ~ r  Igrad~l  
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Here  R is the radius of curvature of the curve [2 at the point P,/5 = 1, if this curve is convex in the 
neighbourhood of  P (i.e. if ~;o  > 0, where d/dcr is the differentiation in a direction tangential to ~ at 
the point P) and 6 = -1 otherwise. 

The contribution of the boundary of the integration region T = t to integral (1.4) is 

U2 = -2~iG(Q) e x p  i ( - 1 1 Q ~  - ~Q~ + t(o(Q) + ~T 12) 

t(o(Q) l ~  

(.o" - "  ^,, 2 D = ~n(Q)togg(Q ) -  (tong(Q)) 

y = sign ~ a  = sign ~ when D > 0 and ~, = 0 when D < 0. 
The point Q = (rio, ~2) is found from the equations 

(0"~ =J/t, (0"~ =~/t (2.3) 

Note that if the region supp G is sufficiently small, the solution of Eqs (2.3) in it is unique. 
The asymptotic form of integral (1.4) when r >> 1, t = O(r) has the form 

U = Ul~(t I grad & I - r )  + U 2 (2.4) 

where the function ~(tl grad ¢31 - r) = Z(t/~o - 1) = 1 when 0 < x0 < t (i.e. when the point (x0, P)  lies 
in the integration region) and Z = 0 otherwise. 

Hence, the field U considered is a wave propagating in the direction ~0 with velocity v = I grad ~(P)  I; 
in front of  the wave front r = ot the field U is identical with/32 and is of the order of t -~, while behind 
the wave front the principle term of the asymptotic form of U is identical with/31, is of the order of  
r -~/2 and is independent oft.  If r--> vt, the point Q approaches P, ~(Q) ---> 0,/32 ---> oo and the asymptotic 
form (2.4) becomes unsuitable. In this case the stationary point (~0, Q) of the phase function turns out 
to be close to the boundary x = t of the integration region. Hence, the asymptotic form of integral (1.3), 
used in the neighbourhood of the wave front, can be expressed in terms of a Fresnel integral [5]. 

3. R E D U C T I O N  O F  I N T E G R A L  ( 1 . 4 )  T O  A S I N G L E  I N T E G R A L  
W H E N  t, r >> 1, r/t -~ 0 

As t gradually increases, when r/t ~ 0, the solution Q of system (2.3) approaches the stationary point 
of the function ~(rl, ~). If at this point the function ~ were not zero (i.e. if the curve ~ did not have a 
point of  self-intersection in the region supp G), then as t ~ oo the function U2 would approach zero. 
In this case integral (1.4) approaches a finite limit as t ---> oo; its asymptotic form in the far zone is identical 
with U1 and is determined by the point P on the curve ~ at which grad ~ is parallel to the vector r = 
(~, y )  and is directed towards the same side as this vector. This asymptotic form is identical with the 
expression obtained previously in [1, 2]. 

In the problem considered ~ = 0 at the stationary point and the function c~(Q) approaches zero when 
rlt --> 0 as rZ/t 2. Hence, U 2 ~ oo as t ~ oo and, obviously, the asymptotic form (2.4) becomes inapplicable. 

In order to obtain the asymptotic form W(t, Fc, y ) as t ---> oo, we will obtain the asymptotic form of the 
integral J in (1.4) for large T, i.e. when r >> 1, r/z ~ 1, for which we will use the stationary-phase method. 
The stationary point Q in this integral has the coordinates 

2 o g v  

I"I=TIQ = 2A 8A 3 - ' ~ B  

_ v 2 

g = ; O - ' ~ - ~  4AB 2 

8AB 2 + -~- 

38--~-+ O( r 31 ) t 3 

whereA,  B, C, D, E and F are the coefficients of expansion (1.2), ~ = ~c/x and v = y/T. 
Evaluation of the inner integral J in (1.3) for large T gives 

J ffiC(Q)expi~p(r, ¢p, x) 

C(Q)= 6)" - ,, ~,, 2 ,. ( ._exp , ,~ (s ignA+signB) j ,  D(Q)= ~I~(Q)(o~(Q)-(rI~(Q)) 
x~/J z ~ )  I k 4 

(3.1) 

• (r, ~o, x) = -Tl~rcos cp- ~Qrsin ~p + Co(Q)x 
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It follows from (1.2) and (1.3) that as x ~ oo 

O(r, 9, x) = r2~2(9)x -t + ra~3(9)x -2 + O(r 4/x3) 

_ (cos9  sin 9") ( cos9  
2A' 2B 2' 2B ) 

where r, ~p are polar coordinates. 
We expand the func, tions G(Q) and ~/([ D(Q) 1) in series in inverse powers of x as x -~ oo 

r 
= c(Q) =o(o, o ) + o ~ - +  .... ~ 1  =2/la4i-~+o~ r = - + . . .  ( 3 . 2 )  

In order to confine ourselves in integral (1.4) to values of x for which the asymptotic form (3.1)-(3.2) 
is applicable, we will use the expansion of unity. We will choose two fairly large constants C1, C2 
(C1 < C2) and infinitely differentiable functions h(r/Q and g(r/x), for which 

h(r/x) + g(rlx) = 1; h(r/x) = 0 when x < Ctr, g(r/'O = 0 when x > C2r (3.3) 

Then, when t > C : ,  integral (1.3) can be written in the form 

l~(t, r, 9)  = W~ + w2 

o o 

The asymptotic folm of I4"1 for large r, (p is constructed by the stationary-phase method (Section 2). 
When calculating W 2 we can use the asymptotic form (3.1), (3.2), i.e. we can consider the integral 

W2=i h(r~c(r-~expit~( r, 9, x) dx, C ( { / = C 0 + { C t + . . .  (3.4) 
o \ ' t y k ' c J  "t 

4. THE A S Y M P T O T I C  FORM OF W2 WHEN THE F U N C T I O N  
*2((P) HAS A LOWER BOUND 

If the function *2((P) has a lower bound in modulus, then for sufficiently large x : x > z~ the derivative 
dO/~  has a lower bound in modulus of value const r2/x 2. In the expansion of unity (3.3) we can assume 
that C1 > xl. Then 1;he stationary point z0 of the phase function is in the region supp g(r/x) and the 
asymptotic form in the far zone of the integral W1 is identical with the contribution of this point, i.e. 
is equal to U1 (see formula (2.2)). 

To calculate the a..~mptotic form of W2 we change to the variable of integration ~ = r/-c 

W2 = ,/, ~ exp(ir~(~))h(~)C(~)~ (4.1) 

Here h(~) is a finite infinitely differentiable function, identically equal to unity in the neighbourhood 
of zero, the function C(~) is the same as in (3.4), while the function 

~V(~) = ~(I)2 (9) + ~2tI~3(9) + . . .  

in the region supp h has a derivative with a lower bound in modulus. Hence, WE when r ~> 1 is an 
integral of a rapidly oscillating function with two close critical points---a pole ~ = 0 of the factor outside 
the exponential function and the boundary ~ = r/t of the integration region. The asymptotic form of 
these integrals, uniform with respect to the distance between the critical points, is expressed (see, for 
example, [6]) in terms of the integral of the exponential function E1 of imaginary argument. We 
have 
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W2ffiCoEl(_iO(r, to, t))+iH(t) expi~(r, to, t)t.O(r_2) 
r 

H(t)= tc(rlt)  Co = G~P2(to)-Co~P3(to) O ( t )  
ru?'(r/t) U?(r/t) ~(to)  + El(+iz)= ~ e -"dff  

+iz 

where we have assumed that z > 0. Since El(±/z  ) ~- 7iexp(7-iz)/z when z -> 1, the asymptotic form 
of W2 when IO(r, to, t) -> 1 is identical with U2. Hence, the asymptotic form (2.4) is applicable when 
[ O(r, tO, t) [ -> 1, i.e. when 

r2leos2 to + sin2 to I 
t '~ r 2 I ~2(to)I= { 4A 4B { 

As z ~ 0 the function El(-.+/z) behaves as In z. Hence, when t increases the function W2 increases 
logarithmically 

W 2 (t, r, to) = C O ln(r2~2 (to) I t) + H(t) I r + O(r -2) + O(t -l ) (4.2) 

5. T H E  A S Y M P T O T I C  F O R M  OF W 2 F O R  S M A L L  ~2(t,p) 

If O2 -~ 0, i.e. tp approaches arctg ~[(-B/A) or n _+ arctg ~/(-B/A), the stationary point 

x 0 = - 2 t O  3 (to) / • 2 (to) + O(1) (5.1) 

of the phase function ~ approaches infinity. Hence, when calculating the asymptotic form I~ in the 
case of small O2 we can assume that, in the expansion of unity (3.3), the constant C2 satisfies the condition 
C2 < I O3(to)/O2(to) I. The phase function in the integral of W1 will have no stationary points in the region 
supp g, and this integral will decrease as t --> oo more rapidly than any power of r and the asymptotic 
form of the field W will b e  identical with the asymptotic form of I4'2. As can be seen from (4.1), when 
t ~. r >> 1 this function is the integral of a rapidly oscillating function with three close critical points: 
the pole ~ = 0 of the factor outside the exponential, the boundary ~ = r/t of the integration region and 
the stationary point ~ = r/to of the phase function ~/(~), where the second derivative V" of the phase 
function has a lower bound in modulus. The simplest integral with such critical points is the Ff-integral, 
introduced in [6]'? 

, -  exp(is2)a~ 
Ff ( 47a, 

where, when ct > 13, the pole s = ~/(r)13 is circumvented in the upper half-plane. 
The uniform asymptotic form of integral (4.1) when q~" > 0, by [6], can be expressed in terms of  the 

Ff-integral and the Fresnel integral using the formula 

W 2 = 2re exp(iraF(r/q:o))CoFf(~rr~ "fr~) + 

+ Se×p(ir~(rlXo))exp(gil4)F(.~)+ i-Texp(irtF(rlt))+O(r-N) 
r 

_ exp(-~ i /4)  4~a 
" I exp(is2  

(5 .2 )  

where 

?See also ANYUTIN, A. P. and BOROVIKOV, V. A., Uniform asymptotic forms of integrals of rapidly oscillating functions 
with singularities of the factor outside the exponential. Preprint No. 42(414), Inst. of Radioelectronics, Akad. Nauk SSSR, Moscow, 
1984. 
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(x = sign(t/Xo - 1)41 ~ ( r l  t) - ~(r / '¢o) ' l ,  P = sign %41 ~P(rl "¢o) I (5.3) 

When q'" < 0 the function Ff(~l(r)a, ~/(r)[3) and exp(rd/4)F(~l(r)ct) in (5.2) can be replaced by the complex 
conjugates. The quantities a, ~, S, T can be expressed in terms of the function q' and its derivatives. 
In particular, retaining the principal terms of the expansions in powers of the small parameter ~2(¢P), 
we obtain 

r l~31 ~ ~2  ~ 3 1  }~ ~2  1~31½ =- , 13=- , S = C 1 ~ 3 1  - ~ ,  r = 0  (5.4) 
t 2 ~  3 2~3 

6. T H E  B E H A V I O U R  OF T H E  F I E L D  fir(t ,~c,y) W H E N  t, r -> 1 

The behaviour of the field W(t , x , y  ) depends on the type of stationary point O = (0, 0) of the function 
go ( ~  + rl, go + ~). We will assume first, that this point is a point of extremum, i.e. that in expansion 
(1.2) the coefficientsA and/?),have the same sign and the point O is an isolated point of the curve o~ = 0. 
When t, r -> 1 the far field W(t,  r cos 9, r sin q0) then consists of the following components 

1. That due to the ,;ingular points of the function o(X~, go) or the factor F(~., p) outside the exponential 
of  the component  t~(t, r, cp). 

2. The componenlls Ui(t, r, cp) due to the regular points Pi of the curve ~ = 0 in which grad go has 
the direction cp. Each term represents a wave propagating in the direction cp with velocity ui(cp) = Igradl 
co (Pi). In front of the wave front, i.e. when r > oi(q~)t, the component Ui is of the order of t -1. In the 
neighbourhood of the wave front, i.e. whenr  ~ ui(~p)t, Ui can be expressed in terms of the Fresnel integral 
(if Pi is a point of  in!flection of the curve ~ = 0), while behind the wave front, when r < oi(q0)/U i it is 
independent of the main term of the asymptotic form of t and is of the order of r v2. If Pi is a point of 
inflection of the curve ~ = 0, then U~, when r <~ oit,  has a more complex asymptoticform. 

3. The component  V(t, r, ~p), due to the singular point O = (~0, go) of the curve ~ = 0. As can be 
seen from (4.2), this component is of the order of unity when 

r ~< r z = const ~/t / I (I)2((I))1 (6.1) 

In other words, the presence of an isolated singular point O on the curve go = 0 leads to the occurrence 
of a resonance zone Z in the neighbourhood of zero, in which the field is of the order of unity. As can 
be seen from (6.1), 1the size of this zone increase as ~/t as t ~ oo. 

Suppose now thai. 0 is a point of self-intersection of the curve go = 0, i.e. suppose the coefficients A 
and B in (1.2) have different signs. We will call the directions q0 in which O2 vanishes 

9t.2 = 5 :a rc tg  -B~L-BT"A; q~3,4 = ~ + arctg (6.2) 

the critical directions and we will denote by 21 . . . . .  ~4 the intervals Icp- Cpk I < 6, where the constant 6 
is chosen to be fairly small. 

Outside these intervals the function • 2 has a lower bound in modulus and the field W consists of 
components of the three types described above. We will show below that this expansion is applicable 
over a wider range anj~ that the following assertions hold. 

A. The expansion W in the components Q, Ui, V is applicable outside the neighbourhoods of the 
critical directions, the boundary of which is defined by the equation 

l,t,2((p) I = Cr-'A41 I (6.3) 

where 

I I = cr-Y2 l I / I = 2Cr-½ /I AB s I (6.4) 

The constant C will be determined below. It is natural to call these neighbourhoods transition regions. 
B. Outside the transition regions the size of the resonance zone in which the field W is of the order 

of unity is given, as previously, by relation (6.1). Inside the transition region the size of the resonance 
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zone can be es t imated f rom the expression 

r <- r z ~- const t ~ I ~ s  I -)~ (6.5) 

Before  proving assertions A and B, we will give some qualitative corollaries of  them. 
It follows f rom est imate (6.1) that the size of  the resonance zone Z increases as the direct ion q) 

approaches  the critical direction, f rom a value of  the order  of  t 1/2 outside the sectors Ek to a value of  

~hgi°rds?~f ~ a t  atheebz°unda~ w°~lIhbeetraenSi~°~lo~gii°n~'t~her~r~tt/t.TOe(r;l~[Insitde tih~rat~sit~a°~, 

as t increases, the resonance zone becomes more  and more  elongated in the critical directions; its size 
along these directions is t 1/6 greater  than the size in directions differing from the critical directions. 

We will now consider how the waves Ui behave close to the critical directions, i.e. inside the sectors 
Ek. These  waves only propagate  on one  side of  each of  the critical directions q)k--in the sector  of  angles 
q) for  which 02 and 03 have different  signs and the stationary point  % defined by (5.1) is positive. The  
distance ri(q~ ) of  the wave front of  the wave U/from the origin of  coordinates is found from the condit ion 
t = Zo, i . e .  

r = r/(t, q~) = -2  t 02( tp) /03( tp)  

As one  approaches  the critical direction I O2((P) I and ri(t, (p) decrease,  and on the boundary  of  the 
transit ion zone,  where  the function O2(q)) is related to r by Eq. (6.3), we obtain 

r /=  r/(t) = (2tC) ~ 1~31 -)~ 

where  C is the same constant  as in (6.3). 
Hence ,  al though far  f rom the critical directions the distance ri f rom the wave front  to the origin of  

coordinates  is o f  the order  of  t, i.e. much greater  than the size of  the resonance zone rz = O(~lt), as 
one approaches the transition region r,. decreases and rz increases, whereas on the boundary of  this region 
ri and rz are of  the same order  of  magni tude with respect to t, equal to t 2/3. 

When  these quantit ies become close to one  another ,  i.e. inside tJ~e transition regions, one  cannot  
separate  the wave U/ f rom the resonance component  V in the field W, 

Proof o f  assertions A andB.  Inside the intervals Y.k the modulus of the function O2((p) is small, and the asymptotic 
form (5.2) holds for W2, where we can use (5.4) for the arguments ~/(r)~t, ~/(r)13 of the Ff-integral and the Fresnel 
integral, and also for the amplitudes S and T. 

The asymptotic form of W2 when r, t I> 1 is determined by the corresponding asymptotic expansions of the function 
Ff(~/(r)(~, 4(r)f3) (see [6]). If the argument "/(r)l] is fairly large, i.e. the pole s = ~/(r)l~ is sufficiently far from the 
stationary point f = 0 of the phase function (for practical applications it is sufficient to put I x/(r)13 I > C, where 
C ~ 2n), then in the asymptotic form of the Ff-integral we can consider separately the contribution of the stationary 
point a = 0 (when cc > 0) and the pole a = 13 (as cc ---> 13). The first term corresponds to the wave Ui, and its wave 
front has the equation ct --- 0, which, as a consequence of (5.3), is identical with (6.5). The second term, which 
increases logarithmically as ct ~ 13, corresponds to the component V. 

When I ~/(r)l] I < C we cannot separate the contribution of the stationary point cr = 0 from the contribution of 
the pole a = 13 in the asymptotic form of the Ff-integral. The condition [ ~/(r)l~ I = C defines the boundary of the 
transition region. 

If we use the asymptotic form of the Ff-integral outside the transition region, which can be done when ] ~/(r)l~ I 
is sufficiently large (see [6]), formula (5.2) reduces to (4.2), whence assertionsA and B follow for points r, (p, which 
lie outside the transition regions. 

It remains to prove that estimate (6.1) holds for the size of the resonance zone inside the transition regions. In 
these regions, i.e. for bounded [(r)l~t, it is more convenient to use the following expression for the Ff-integral (see [6]) 

Ff  (,f;lx, ,f;~) = exp(i~2 ~ - ~ E l  (ir(a - [~)2 ) - 2 F" ( ~'r(ot - ~) ) ] + J2 ( ~ro~,'f;[$) 

where F* is a function which is the complex conjugate of the Fresnel integral, and 

J2('~ffcc,'~/~13) = exp(ira2) 7 exp(iaz) exp(-2ia'vr~a)-exp(-2ir(cc-f3)a) da 
4x o c s - G ( a - B )  

can be expanded in a convergent series in powers of ~/(r)(ct - 13), ~/(r)ct. Hence it follows that, inside the transition 
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regions, the logarithmically increasing component of the fields W2 is given by the function 

4~/~(ir(tX --  1~)2) = 1 Ea(ir3 l o s  It-2) 

which has an order of magnitude not less than unity for small r31 (1)31 t-2. Hence estimate (6.4) also follows• 

7. D E G E N E R A C Y  OF THE STATIONARY P O I N T  r I = ~ = 0 
OF THE F U N C T I O N  

In the previous ana~lysis we assumed that the stationary point r I = ~ = 0 of the function ~o(L0 + 11, ~ + ~) 
is non-degenerate, i.e. that the coefficients A and B do not vanish in expansion (1.2). This condition is not 
always satisfied. We will estimate the size of the resonance zone and the order of increase in W2 as t ~ oo for 
the case when the stationary point is degenerate• To fix our ideas we will putA = 0 in expansion (1•2). 

In subsequent calculations we will omit terms which have no effect on the final estimates. 
Assuming G = 1 i:a (1.3) we carry out the integration over ~ in the inner integral and we express the 

integral over rl in tenrlS of the Airy function. It is convenient to separate the dimensional factor IBI -~ 
from the function W 

W = W / I B I  

Then 14/will be a dimensionless function of t, x, y 

d'l: 

13CI ~ 
r " E  

o 

r 2 sin 2 (p DSr s sin s ~0 Dr 2 cos ~psin q) 
S(~) = - + 

4B'c 72BsC2x ~ + 6BC'c 

D 2 

p = (3C) -~ ,  q = 482(3C)~ 

where r, cp are the polar coordinates (2.1). Since the critical directions tok, by (6.2), approach +-hi2 as 
A ~ 0, when A = 0 the critical directions are the directions --.•/2. 

We will estimate the asymptotic form of W and the size of the resonance zone for fixed to ~ +_.n/2 
and when to = __.n/2. M_ore exactly, we will estimate, for fixed M, the dimensions of the neighbourhood 
of zero inside which I W I ~> M. 

When ( o ~ n/2 and r >-, t >! qrsln2to/(pcosto) we can neglect the second term in the argument of the 
• ^ - 1 / 3  w obtain Airy function. Changing to the integration variable ~ -- pxx , _e  " 

= 6~ ~ exp[~/sign B / 4It ~ H(..(3C)_ ~ t _ ~  ) 

1 3 C  I P; 

Since H(0) approaches a finite limit as 0 ~ 0, the function ~ '  increases a s  t 1/6 as t + oo. 
We will estimate the size of the resonance zone, i.e. the region in which W >~ M. This region is 

determined by the values of~ for which 

H(--(3C)-~t-~J) ~ MI Cl~l BI -~  t - ~  ~> 1 

Using the asymptotic form of the Airy function when I ~ [ >> 1, we obtain that when I 0 1 >> 1 

.J 0,0 
H(e) /e / 

j .  o>o 
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Hence, for fixed ~p ~ -*'n/2 and r -> I we obtain for the size of the resonance zone 

I ~ I = rz I cos~01 = f6M-~B~C~t~ when sign.~ = sign C (7.1) 

l(3C)J4t N when sign~ = - s i g n C )  

Th~ asymptotic form is inapplicable when y -> }. We will estimate the size of the resonance zone 
whenx = 0. This estimate has a different form when D ;e 0 and D = 0. Suppose first that D ~ 0. Then, 
changing to the integration variable ~ = qy2T-4/3 we obtain 

-- 3nYg l~f(-~l (~isignBtgT(q~2t-~)) 
w = 213c lZ 

T(0) = I 0 1 ~ 7 eiS[(qS'2/~] Ai(~sign 0)2~7-~9/_ 
I01 

It can be seen tha ton  the y axis the order of increase of 1~ as t ~ oo is the same as when.r -> 1 and has 
a lower bound ]x/y I. 

We will estimate the size of the resonance zone along the y axis. When I 0 I "> 1 the function T(0) 
and has the same asymptotic form as the function H(0). Hence, we obtain for the size of  the resonance 
zone along they  axis, i.e. when (p = __.r:/2 

r z = I } I _ I I , 2 M - N I B I ~ I C I - N I I q l  - ~ t  ~, q < 0  (7.2) 

Iql-~ t ~, q > 0  

When D = 0 and x = 0 we have 

~" = 2~ ~ ~]l B I exp[ni sign B / 4] Ai(0)t ~ 

13CI ½ 

T(0) =l 0 I~ Jof7 exp[-igsign0l ~'~6 

The function I T(0) I = I 0 1-1 when ] 0 1 "> 1, and hence we obtain the following relation for the size 
of the resonance zone along the y axis 

rz =1 I ~ 2 (3C)-J (n I B I)~M-~t ~2 (7.3) 

As was shown in Section 6, for the case of a non-degenerate stationary point the size of the resonance 
zone in the critical direction w a s  t 1/6 times greater than in a direction differing from the resonance 
direction. It can be seen from the estimates obtained that for the case of a degenerate stationar~point, 
when two critical directions merge, the ratio of these dimensions increases more rapidly--as t ~''. 

8. T H E  T H R E E - D I M E N S I O N A L  P R O B L E M  

We will outline the construction of the asymptotic form of the far field in the case of resonance for the three- 
dimensional problem. In the three-dimensional case the analogue of (1.3) is the expression 

t 

• (t,~Sd) = ]Jax 
o 

J = ]]I G(n,~,y)expi(-rl.~ - ~ -  y~ + x&(rl,~,y))dTld~ (8.1) 

where 

~(TI,~,~') = ~(~'0 +q, ,% +E, ~0 + 5')- ~O,PO,~,O)- ~ V~ -~;Vy -~'V~ 
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The integral J = J(x, r, 0, ~0) in (8.1) (r, 0, tO are spherical coordinates in the space ~, ~,) is of the order of x -3/2 
as x --~ oo (see below). Hence, unlike the two-dimensional case the external integral converges as t -~ oo, i.e. a steady 
state 

W(r,O, tp) = ~J(x, r,0,tp)d't (8.2) 
0 

exists. 
In the case of resonance the function ~'(rl, ~, 7) vanishes at the origin of coordinates together with its first 

derivatives. We will assume that the matrix of the second derivatives at this point is non-degenerate. Then, the 
directions of the x, y, z axes can be chosen in such a way that the expansion of tS(~, ~, 7) in powers of  ~501, ~, 7) has 
the form 

~2 L r 2  ~ 2 
= 

where (o3 is a homogeneous polynomial of the third degree, and the dots denote the following terms of the expansion. 
We will also assume that the function G vanishes outside a fairly small neighbourhood of the origin of coordinates. 

Under these conditions, the asymptotic form of J(z, r, 0, 9) when x >> r >> 1 can be calculated by the usual stationary- 
phase method 

const r r 2 1/]  J(~'r'O'cP)~--'w'-exd-i~--*2+-'~*3rT1 L ~ '~ ,[ + ~ - ' 4  r3 + ~,~4L (8.3) 

Here 

~k =-(-l)ktOkf cOsO sinOcos~p sinOsin~p~ 
~, ~a ' 2b " "  2c ) ,  k=2,3 

and 04 is a homogeneous polynomial of the fourth degree of cos 0, sin 0, cos 9, sin 0 sin 9- 
Using the expansion of unity (3.3), we can reduce the problem to calculating the asymptotic form of the integral 

of the product h(r/z)J(x, r, O, 9), where h is a cutoff function, which separates the neighbourhood of an infinitely 
distant point at which the asymptotic form (8.3) is applicable for Z Making the change of variable ~ = ~[r/x we 
obtain 

W2(r,O,(P) ~" ~ f '  h(~2)expir(~202 +~403 +~eO 4 + ...)d~ 
r 72  . . ~  

The asymptotic fo~rm of W2 as r ~ oo is determined by the values of the functions 02, 03, 04. If the origin of 
coordinates O = (0, 0, 0) is a point of extremum of the function ~, i.e. the coefficients a, b and c in (8.3) have the ] 
same sign, then 02(0, 9) has a lower bound in modulus for any 0, 9- Hence, W2 is of the order of r- as r ~ ~, i.e. 
of  the same order as the components of the far field, due to regular points of the surface t5 = 0 at which grad t3 
has the direction 0, 0 (see [1, 2]). If O is a saddle point of the function tS, i.e. a conical point of the surface ~ = 
0, then the asymptotic form of W2 for fixed 0, 9 and as r ~ oo is of the order o f r  -3 when • 2 ~ 0, r -3/4 when O2 

a d r -:~3 0, butO3 0 n whenO 2 = O  3 = 0 , b u t O 4 ~  0. 
We will explain the geometrical meaning of these conditions. 
The condition 02 = 0 defines the cone S of critical directions 0, 9 for which the plane Y. rlcos0 + ~sin0cos9 + 

ysin0sin9 = 0 is touched at the point O by the surface ~ = 0. If (1)3 changes sign on the cone S, then there are 
directions % 9i on this cone for which (1)3 = 0. We will call these directions supercritical directions. For these 
directions the plane Z comes in contact with the surface ~ --- 0 at the point O. In general, the function O4 does 
not vanish in superc:ritical directions. 
-3Hence'4 .W2. is of. the order of r -] for directions 0, tp which differ from the crmcal" " dtrections," is of the order of 

r / for crmcal directions which differ from the supercritical directions, and is of the order of r -2/a for supercritical 
directions. 

This asymptotic fc,rm is non-uniform, i.e. it is inapplicable for directions 0, 9 close to the critical and supercritical 
directions respectiw:ly. In the first case, i.e. for small O2 and for O3 having a lower bound in modulus, the model 
integral describing the uniform asymptotic form W2 is the integral 

J2 = r - ~  I 'I)31 -~  ~ expi(a~ 2 + ~4 signO3)d~ ' a = r~O21031 - ~  

which reduces to the Pearcey integral [7]. 
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Similarly, in the neighbourhood of a supercritical direction, i.e. directions in which O2 and O3 are small and the 
function 04 has a lower bound in modulus, the model integral is the integral 

Js = r - ~  1~4 1 - ~  Y expi(t~ 2 +1~ 4 +~Ssign~4)d~ 

a = r'~,Z)21~41 -~ ,  f~ = rY~'t's I 't'41 -ys 

It reduces to the generalized Airy functions introduced in [8]. 
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