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THE FAR FIELD OF A MOVING OSCILLATING SOURCE
IN THE CASE OF RESONANCET
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The field excited by a moving oscillating source in a two-dimensional linear medium with dispersion (for example, a source of
surface waves) is considered. It is assumed that the velocity of the source is equal to the group velocity corresponding to its
oscillation frequency (taking the Doppler shift into account), i.e. resonance occurs. The asymptotic form of the wave field in the
far zone for long time ¢ is described. In particular, in the neighbourhood of the zero there is a resonance zone in which the wave
field is of the order of unity or higher and the size of which increases as % in critical directions, i.e. in directions perpendicular
to the dispersion cuwe at its point of self-intersection. In directions which differ from the critical direction, the size of the resonance
zone increases as /2. The case of a degenerate stationary point of the dispersion function is also considered. A sharper resonance
then occurs and the field increases as £/°. The three-dimensional problem is briefly considered. © 1998 Elsevier Science Ltd. All
rights reserved.

In the general theory of fields, excited by oscillating wave sources, it is assumed [1, 2] that steady oscillations excited
by a source which oscillates at a frequency g, are described by the Fourier integral

F(A, p)exp(—i(hx +puy)) 0.1)
B((ﬂo, A. u) W

(the two-dimensional problem is considered). Here B(w, A, u) = 0 is the dispersion equation. In other words, it
is assumed that the wave field in the medium considered can have the form of a plane wave exp i(wt — Ax — wy)
only if B(w, A, u) = 0

If the oscillating source moves uniformly and rectilinearly with a velocity V = (V,, V), the steady field in a system
of coordinatesx =x ~ ¥, t;y =y — V¢, moving together with the source, is also described by integral (0.1), if x and
y are replaced byx, y in the exponent of the exponential function, and the dispersion function B(wg, A, p) is replaced
by B(wg, A, w) = B(wg - Vik ~ Vi, A, ).

When evaluating integral (0. 1) the problem of regularization arises, i.e. the problem of how to understand integral
(0.1) in the neighbourhood of the zeros of the function B(wy, A, ). Natural physical considerations, which reduce
to the fact that the inflow of energy from infinity is excluded, lead to the radiation principle, according to which
integral (0.1) must be understood as the limit [1, 2]

q = exp(iog)f

FQ\, pexp—i(Ax +uy))
d\dp .
Blwg-ie, A, 1) ©02)

g= lim_exp(iog)ff
e—+0

Below we consider the case when the curve B = 0 has singular points at which the partial derivatives of the
function B with respect to A and p vanish. The integral on the right-hand side of (0.2) then increases as In £ as
£ — 0. We will show that in this case steady oscillations do not exist in general. If the oscillating source is disconnected
and motion begins at a certain instant of time #j, then, as # — o, the field does not tend to an expression of the
form exp(iwgr)g(x,y ), but increases logarithmically. The reason is that when there is a singular point A = Ag, p =
uo on the dispersion curve the group velocity of the oscillations with frequency @y is zero (in a moving system
of coordinates x, y and taking the Doppler frequency shift into account). Hence, at a fixed point of observation
X = const,y = const at a certain t = ¢, > t,, the oscillations excited for all 7 in the interval fo < ¢ < t, arrive with
the same phase and are summed in modulus, i.e. the phenomenon of resonance occurs. Here, as will be shown
below, for any medium and any point A = Ay, p = py we can choose the velocity V of motion of the source and
the frequency wyq of its oscillations such that this point is a singular point of the curve B = 0 and the phenomenon
of resonance occurs.

The motion of an oscillating source of surface waves with a resonance velocity has been considered in the case
when the spectral density F(A, u) at the singular point A = A9, u = py of the dispersion curve vanishes [3]. No
storage effects therefore arise here and the field approaches a finite limit as ¢ — .

Below we find the asymptotic form of the far field for large values of ¢ in the case of resonance and we write
out expressions for the logarithmically increasing field component. The three-dimensional problem is briefly
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considered. In this case the field approaches a finite limit as z — «, but, nevertheless, the effects of resonance and
field storage lead to a qualitative change in the behaviour of the field in the far zone.

1. INTEGRAL REPRESENTATION OF THE FIELD
OF A MOVING SOURCE

We will consider a medium in which the field of the source g, with a time-dependence of the form
8(¢) has the form

qt, % y)=[f FO, wexpi(=hx—py+w(h, p)didn (11)

The functions F(2, p) and o(}, u) depend on the problem considered. For example, in the Cauchy-Poisson
problem for surface waves on deep water (g(¢, x, y) i 1s the height of the free surface) Green’s function consists
of two terms of the form (1.1) with © = +\/'(kg + k%), where k = J(A? + y?), g is the acceleration due to
gravity and y is the surface tension coefficient.

Green’s function for the field of internal gravrtatlonal waves can be represented in the form of the sum of modes;
the field of the nth mode can also be represented in the form of the sum of two terms of the form (1.1) with ® =
+w,(k) and F = const @,(k, 2)9,(k, zo)wn(k)k%, where ,(k) and @,(k, z) are the eigenvalues and eigenfunctions
of the vertical eigenvalue problem [4]

¢" + Rorl(N%(z) - 0?9 =0

with zero boundary conditions on the surface z = 0 and on the bottom z = —H and with eigenfunctions normalized
with weight N (2). Here k is the free parameter and o is the spectral parameter, the square of the Viisdld-Brunt

frequency N'(z) = ~gpy ()dpy/dz. N |
Hence, in the three-dimensional problem of the propagation of internal gravitational waves in a layer -H <

z = 0 of stratified liquid, the depth z occurs as a parameter. The results obtained below on the growth of the field
hold for any characteristic of the field of internal gravitational waves in the integral representation (1.1) in which
the spectral density F(A, ) does not vanish at the singular point A, i, of the dispersion curve B(A, p, w) and, in
particular, for the elevation.

The field W(¢, x, y) of the source, moving with velocity V = (V,, V,), beginning at ¢t = 0, and oscillating
with a frequency @y, can be written in the form

WG, x, y)=expliog)W@, %, 9)

A~ ! hed N
W@, %, =] dt ] FO, Wexpli(=hi -y + @}, pyr)drdp
0

O, =0, W-AV,~pV, -w,

wherex =x—-V,t,y = ~ V¢ is a system of coordinates moving together wrth the source.

We will further cons1der the asymptotic form of W for large ¢, r =V(x* + y?). The singular points of
the functions x (A, p) and F(A, i) make a contribution to thrs asymptotlc form. For example, for surface
waves the function w(A, u) behaves as vk when k = V(A2 + p%) — 0; for internal gravrtatronal
waves this function behaves as k as k — 0, while the amplitude factor F(A, u) behaves as k™.

It can be shown that the contribution of the smgular point A = p = 0 to the a Ymptotrc form of the
far field for fixed ¢ and r — o is of the order of ¥ for surface waves and r~ for internal waves.
We will dwell on the contribution to the asymptotic form of W of such singular points and consider
the terms in the asymptotic form governed by the singular points of the surface ® = 0, i.e. the values
of A, p for which o is a regular function but ® = 6w /0A = dw/dn = 0.

As was stated above, for any A, pg we can choose a velocity V of the source and the frequency of its
oscillations w, such that the point Ay, L is a singular point of the surface @ = 0. To do this we must
put

on Jdo

v, V.\-‘=$; 0o =w(Ag, Mo)—lon-roy

x= 5{!
where the derivatives dw/0A and dw/du are taken at the point Ag, p.

We put A = &y + n, p = py + & The expansion in powers of 1,  has the form
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Do +M, Mo +0)=y(n, H+0ym, H+0M* +8%) (12)
0,(m, §)=An+ B @y, §)=Cn’ + DG+ EnG + FE

(if necessary we rotate the A, p axes). Changing to the integration variables i = A — g, {=npn-ypwe
obtain

W@, % ) =expi(-AZ—po)W'(t, £, ) (1.3)

- "t
w(, %, =] Jat
(1]

J =[] G, Qexplit-nz-§+aMm, HHrdndg (1.4)

dm, =0 +1, Ho+8r GM H=FRo+M Ko+ 9]

We will assume that the stationary point O = (0, 0) of the function &(n, ¢) is non-degenerate, i.e.
A# 0,B=# 0. Using the ordinary technique of the expansion of unity, we will assume that G(n, §)is
an infinitely differentiable finite function and that, in the region supp G, the function @(n, &) is analytic
and has a unique stationary point O.

IfAB > 0, then O is an isolated point of the set Q : &. If AB < 0, then O is a point of self-intersection
of the curve Q; ®(n, ) = 0 we will assume in this case that the branches of Q have non-zero curvature
at 0, i.e. that the cubic polynomial w3(n, §) does not vanish on the tangents = +nV(-B/A) to the
branches of Q.

2. THE ASYMPTOTIC FORM OF INTEGRAL (1.4)
WHEN r = V@2 +y5) > 1,t = O(r)

This asymptotic form is determined, first, by the stationary points of the phase function in triple integral
(1.4) and, second, by the asymptotic form of the integral J as T — . The stationary points of the phase
function @(t,n, {) = - —Cy + © (, &)t are specified by the equations @', = ®'r = @', =0, whence
&, = x/t, @ =y, ® = 0. It follows from these equations that for specified x, y the stationary
point P = (1, G) is a point on the curve Q at which grad @ is parallel to the vector (x,y). If these vectors
are directed opposite to one another, the value of < at the stationary point of the phase function is
negative and there are no stationary points in the region of integration with respect to T in (1.4). If the
vectors (x,y) and grad & are in the same direction, the value of 1 at the stationary point is equal to
(r, @ are polar coordinates in the x, y plane)

1o =r/1grad®(P)l; (X=rcos@, y=rsing) 2.1)

If the origin of coordinates O is a point of self-intersection of the dispersion curve Q (i.e. in expansion
(1.2) AB < 0) and the direction ¢ approaches the direction of the normal to some branch of the curve
Q at the point O (i.c. tgp = ++(-BJA)), then P — O, | grad @(P) | - 0 and to/r —> . We will consider
this case below, but we will confine ourselves now to directions ¢ which differ from *arctg \(-B/A),
n + arctg N(-B/A) and to values ¢ = o).

Under these conditions the asymptotic form of integral (1.4) is determined, first, by the contribution
U, of the stationary point (T, P) (if this point falls in the region of integration), i.e. when? > 7o > 0 and,
second, by the contribution U, of the boundaries of the integration region, i.e. the planes © = Oand 1
= ¢. However, the plane t = 0 makes no contribution to the asymptotic form of the integral (1.4), since
for large values of r and fairly small values of  in the region supp G(n, §) the phase function in the inner
integral in (1.4) has no stationary points and the integral decreases more rapidly for any power of r.

U, and U, are calculated by the stationary-phase method. The contribution of the stationary point
(10, P) of the phase function is

_[Renkep  f o p 5 ™
Ul—\ﬁ lgrad®1 expz( Npx-Cpy 4) (2.2)
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Here R is the radius of curvature of the curve Q at the point P, § = 1, if this curve is convex in the
neighbourhood of P (i.e. if &, > 0, where d/do is the differentiation in a direction tangential to Q at
the point P) and 8 = -1 otherwise.

The contribution of the boundary of the integration region t = ¢ to integral (1.4) is

U, = Z2MG(Q)expi(-ngk ~Lof +1(Q) + ny/2)

2 QNI DI
D = &y Q)@ (Q) - (@7 (Q))?

y = sign &}, = sign &¢; when D > 0 andy = O when D < 0.
The point Q = (ng, Gg) is found from the equations

oy =3x/t, @p=3/t (2.3)

Note that if the region supp G is sufficiently small, the solution of Eqs (2.3) in it is unique.
The asymptotic form of integral (1.4) when r > 1, t = O(r) has the form

U=Uy(tlgrad®|-r)+ U, (2.4)

where the function x(#| grad @ | —r) = x(t/1o — 1) = 1 when 0 < 1y < ¢ (i.e. when the point (g, P) lies
in the integration region) and y, = 0 otherwise.

Hence, the field U considered is a wave propagating in the direction ¢ with velocity v = | grad ®(P) |;
in front of the wave front r = uf the field U is identical with U, and is of the order of ', while behind
the wave front the principle term of the asymptotic form of U is identical with Uy, is of the order of
r"2 and is independent of ¢. If r — v, the point Q approaches P, &(Q) — 0, U, — c and the asymptotic
form (2.4) becomes unsuitable. In this case the stationary point (ty, Q) of the phase function turns out
to be close to the boundary t = ¢ of the integration region. Hence, the asymptotic form of integral (1.3),
used in the neighbourhood of the wave front, can be expressed in terms of a Fresnel integral [5).

3. REDUCTION OF INTEGRAL (1.4) TO A SINGLE INTEGRAL
WHEN¢t,r>»1,r/t -5 0

As t gradually increases, when r/t — 0, the solution Q of system (2.3) approaches the stationary point
of the function &(n, ). If at this point the function @ were not zero (i.e. if the curve Q did not have a
point of self-intersection in the region supp G), then as ¢ — o the function U, would approach zero.
In this case integral (1.4) approaches a finite limit as # — oo; its asymptotic form in the far zone is identical
with U; and is determined by the point P on the curve Q at which grad & is parallel to the vector r =
(x,y) and is directed towards the same side as this vector. This asymptotic form is identical with the
expression obtained previously in [1, 2].

In the problem considered @ = 0 at the stationary point and the function &(Q) approaches zero when
rit = 0 as #/*. Hence, U, — o0 as t — oo and, obyiously, the asymptotic form (2.4) becomes inapplicable.

In order to obtain the asymptotic form W(z,x,y) as ¢ — o, we will obtain the asymptotic form of the
integral J in (1.4) for large 1, i.e. when r > 1, r/t < 1, for which we will use the stationary-phase method.
The stationary point Q in this integral has the coordinates

n=n & 3’ b B (P
2724 847 4A’B 3AB’ s

2 2
(=to=r-D5 _ BV SNV iy

2B 8A’B 4AB® 8B’

(3.1)

where A, B, C, D, E and F are the coefficients of expansion (1.2), & = X/tandv = ;/t.
Evaluation of the inner integral J in (1.3) for large t gives

J = C(Q)expi®(r, ¢, 1)

2nGH . . ~ - -
Q)= ?J/TT%%“P z(% (sign A +sign B)} DIQ) = @y (Qdf (Q) - @7y ()

B(r, @, T)=-Ngrcos@-Lyrsin@+Q0)T
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It follows from (1.2) and (1.3) thatas t — o
B(r, @, 1)=ro,(eyt” + rPd (o)1 + 004 1 1°)

where r, ¢ are polar coordinates.
We expand the functions G(Q) and V(| D(Q) |) in series in inverse powers of 1 as T —

G(£)=c<g)=c(o,0)+c,§+..., D(§)|=JD<Q) =2/IABI+D 2+ (32)

In order to confine ourselves in integral (1.4) to values of t for which the asymptotic form (3.1)~(3.2)
is applicable, we will use the expansion of unity. We will choose two fairly large constants C;, C,
(C, < C,) and infinitely differentiable functions A(r/t) and g(r/t), for which

h(r/t) + g(rft)=1; h(r/t)=0 when 1< Cyr, g(r/t)=0 when ©>Cyr (3.3)
Then, when ¢ > C,r, integral (1.3) can be written in the form

W@, r, )=W +W,

00 I
W, =W (r, @)= (j’ g(%).l(% cp)d‘c, Wy =Wy, r, @)= h&)J& (p)d’t
0

The asymptotic form of W for large r, ¢ is constructed by the stationary-phase method (Section 2).
When calculating W, we can use the asymptotic form (3.1), (3.2), i.e. we can consider the integral

o (r r . dt r r
W= {E){S)ewiow o, DL, df)=cri.. (3.4)

4. THE ASYMPTOTIC FORM OF W, WHEN THE FUNCTION
®,(¢) HAS A LOWER BOUND

If the function ®,(¢) has a lower bound in modulus, then for sufficiently large 1 : © > 1, the derivative
d®/dt has a lower bound in modulus of value const /12, In the expansion of unity (3.3) we can assume
that C; > t;. Then the stationary point t; of the phase function is in the region supp g(r/t) and the
asymptotic form in the far zone of the integral W, is identical with the contribution of this point, i.e.
is equal to U, (see formula (2.2)).

To calculate the asymptotic form of W, we change to the variable of integration & = r/x

W, = 3; exp(ir‘v(é»h@)aé)%— (4.1)

Here A(§) is a finite infinitely differentiable function, identically equal to unity in the neighbourhood
of zero, the function C(£) is the same as in (3.4), while the function

YE) =ED, () +E2D5(0) +...

in the region supp 4 has a derivative with a lower bound in modulus. Hence, W, when r > 1 is an
integral of a rapidly oscillating function with two close critical points—a pole & = 0 of the factor outside
the exponential function and the boundary & = r/t of the integration region. The asymptotic form of
these integrals, uniform with respect to the distance between the critical points, is expressed (see, for
example, [6]) in terms of the integral of the exponential function E, of imaginary argument. We
have
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exp id>(r, Q, 1)

Wy = CoE,(=i®(r, @, 1)+iH(r) +0(r'?)

- tC(r/t) Co CI(DZ((P) Coq)a;((P) 0( . _“ -0 do
O i Ve ™™ o) ) fi)= | e

where we have assumed that z > 0. Since E(%iz) = Fiexp(+Fiz)/z when z > 1, the asymptotic form
of W, when |®(r, @, t) > 1 is identical with U,. Hence, the asymptotic form (2.4) is applicable when
| O, 0,1) | > 1, i.e. when

cos? cos” @ smz(p

1<r?1®,(0)=r?
rr 1@, (@)=r 5

As z — 0 the function E;(+iz) behaves as In z. Hence, when ¢ increases the function W, increases
logarithmically

Wy(t, r, @)= CyIn(r’®,(9)/ )+ H(t)/ r+0¢2)+0(¢™") (4.2)

5. THE ASYMPTOTIC FORM OF W, FOR SMALL ®,(9)
If ®, — 0, i.e. ¢ approaches arctg V(-B/A) or n + arctg V(~B/A), the stationary point

To = —2rd;(9)/ ©, (@) + O(1) (5.1)

of the phase function @ approaches infinity. Hence, when calculating the asymptotic form W in the
case of small @, we can assume that, in the expansion of unity (3.3), the constant C, satisfies the condition
C, < | @3(9)/D,(¢) |. The phase function in the integral of W, will have no stationary points in the region
supp g, and this integral will decrease as ¢ — c more rapidly than any power of r and the asymptotic
form of the field W will be identical with the asymptotic form of W,. As can be seen from (4.1), when
t > r > 1 this function is the integral of a rapidly oscillating function with three close critical points:
the pole & = 0 of the factor outside the exponential, the boundary § = r/t of the integration region and
the stationary point § = r/ty of the phase function y(&), where the second derivative y" of the phase
function has a lower bound in modulus. The simplest integral with such critical points is the Ff-integral,
introduced in [6]F

Vi
Ff(Jra, JrB)==— ln J —-T——-:fp(:;sidjo

where, when a > B, the pole s = V(r)p is circumvented in the upper half-plane.
The uniform asymptotic form of integral (4.1) when ¥ > 0, by [6], can be expressed in terms of the
Ff-integral and the Fresnel integral using the formula

W, =2nexp(ir¥(r/ 1,))Co Ff (ra, rB) +
+ \/% Sexp(ir¥(r/ty))exp(mi/ 4)F(\ro) + -::-Texp(ir‘l‘(r/t)) +0(r %) (5.2)
i/ 4) Ve
F(ro) = 95"—(3%‘—/5—) | exp(is?)ds
where

tSee also ANYUTIN, A. P. and BOROVIKOV, V. A,, Uniform asymptotic forms of integrals of rapidly oscillating functions
with singularities of the factor outside the exponential. Preprint No. 42(414), Inst. of Radioelectronics, Akad, Nauk SSSR, Moscow,
1984,
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o =sign(t/ T - DIPr/N-P(r/ )], B=signtoy|¥(r/ o)l (5.3)

When ¥ < 0 the function Ff(¥(r)a, V(r)B) and exp(i/4)F((r)) in (5.2) can be replaced by the complex
conjugates. The quantltles a, B, S, T can be expressed in terms of the function ¥ and its derivatives.
In particular, retaining the principal terms of the expansions in powers of the small parameter ®y(o),
we obtain

]
u=_r|d>3l/2_d>2]<b3|y2, B=—¢2|¢3|%’ S=C|®;1 2, T=0 (5.4)
t 2d, 20,4

6. THE BEHAVIOUR OF THE FIELD W(t, %, ) WHEN ¢, r > 1

The behaviour of the field W(t X,y) depends on the type of stationary point O = (0, 0) of the function
® (Mg + M, po + ). We will assume first, that this point is a pomt of extremum, i.e. that in expansion
(1.2) the coefficients 4 and B have the same sign and the point O is an isolated point of the curve ® = 0.
When ¢, r > 1 the far field W (¢, r cos ¢, r sin @) then consists of the following components

1. That due to the singular points of the function @(Ag, ng) or the factor F(A, ) outside the exponential
of the component Q(z, 7, ¢).

2. The components Ugt, r, ¢) due to the regular points P; of the curve ® = 0 in which grad ® has
the direction ¢. Each term represents a wave propagating in the direction ¢ with velocity v(¢) = |grad|
® (P;). In front of the wave front, i.c. when r > v/(¢)t, the component U; is of the order of £ . In the
nelghbourhood of the wave front, i.e. whenr =~ v (o), U; can be expressed in terms of the Fresnel mtegral
(if P; is a point of inflection of the curve ® = 0), whlle behind the wave front, when r <oy Uit is
1ndependent of the main term of the asymptotic form of ¢ and is of the order of 2. 1f P; is a point of
inflection of the curve ® = 0, then U}, when r < vy, has a more complex asymptotic | form

3. The component V(t, r, ), due to the singular point O = (&g, pg) of the curve @ = 0. As can be
seen from (4.2), this component is of the order of unity when

r<r= const,/t/ | @, ()| (6.1)

In other words, the presence of an isolated singular point O on the curve @ = 0 leads to the occurrence
of a resonance zone Z in the neighbourhood of zero, in which the field is of the order of unity. As can
be seen from (6.1), the size of this zone increase as Vt as t — . .

Suppose now that 0 is a point of self-intersection of the curve © = 0, i.e. suppose the coefficients 4
and B in (1.2) have different signs. We will call the directions ¢ in which ®, vanishes

¢ =tarctg w/—B/ A, @34=mntarctg \/—B/ A (6.2)

the critical directions and we will denote by Z,, . . ., Z4 the intervals |p — ¢;| < 3, where the constant &
is chosen to be fairly small.

Outside these intervals the function @, has a lower bound in modulus and the field W consists of
components of the three types described above. We will show below that this expansion is applicable
over a wider range ang that the following assertions hold.

A. The expansion W in the components Q, U,, V is applicable outside the neighbourhoods of the
critical directions, the boundary of which is defined by the equation

|®,(9) 1= Cr % [ @5 (@] (6.3)
where
19— = Cr 2, [05(9) ] /1 ®5(0;) 1= 2Cr % [ ABD, | (6.4)

The constant C will be determined below. It is natural to call these neighbourhoods transition regions.
B. Outside the transition regions the size of the resonance zone in which the field W is of the order
of unity is given, as previously, by relation (6.1). Inside the transition region the size of the resonance
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zone can be estimated from the expression
r < ry =const % | g l'}é (6.5)

Before proving assertions A and B, we will give some qualitative corollaries of them.

It follows from estimate (6.1) that the size of the resonance zone Z increases as the direction ¢
approaches the critical direction, from a value of the order of 1'% outside the sectors X to a value of
the order of 2% at the boundary of the transition regions, where | cDZ(q); ; = O(r"""%. Inside the transition
regions, the resonance zone, as will be seen below, is of the order of ¢ 3. These estimates indicate that,
as t increases, the resonance zone becomes more and more elongated in the critical directions; its size
along these directions is ¢'/° greater than the size in directions differing from the critical directions.

We will now consider how the waves U; behave close to the critical directions, i.e. inside the sectors
;. These waves only propagate on one side of each of the critical directions ¢,—in the sector of angles
¢ for which @, and @ have different signs and the stationary point 1y defined by (5.1) is positive. The
distance r,(p) of the wave front of the wave U, from the origin of coordinates is found from the condition
t = 1g, 1.C.

r=r(t,@)=-2t0,(¢@)/ D3(¢)

As one approaches the critical direction | ®x(¢) | and r(¢, ¢) decrease, and on the boundary of the
transition zone, where the function ®,(¢) is related to r by Eq. (6.3), we obtain

K= ()= @O | @y 4

where C is the same constant as in (6.3).

Hence, although far from the critical directions the distance r; from the wave front to the origin of
coordinates is of the order of ¢, i.e. much greater than the size of the resonance zone r; = O(Vt), as
one approaches the transition region r; decreases and r; increases, whereas on the boundary of this region
r; and r, are of the same order of magnitude with respect to ¢, equal to £*°,

When these quantities become close to one another, i.e. inside the transition regions, one cannot
separate the wave U; from the resonance component V in the field W.

Proof of assertions A and B. Inside the intervals ; the modulus of the function ®,(¢) is small, and the asymptotic
form (5.2) holds for W,, where we can use (5.4) for the arguments V(r)a, V(r)B of the Ff-integral and the Fresnel
integral, and also for the amplitudes S and 7.

The asymptotic form of W, when r, ¢ = 1 is determined by the corresponding asymptotic expansions of the function
Ff(N(r)a, Y(r)B) (see [6]). If the argument V(r)B is fairly large, i.e. the pole s = \ﬁr)ﬁ is sufficiently far from the
stationary point f = 0 of the phase function (for practical applications it is sufficient to put | V(r)B { > C, where
C =~ 2n), then in the asymptotic form of the Ff-integral we can consider separately the contribution of the stationary
point ¢ = 0 (when o > 0) and the pole ¢ = B (as o — B). The first term corresponds to the wave U,, and its wave
front has the equation a = 0, which, as a consequence of (5.3), is identical with (6.5). The second term, which
increases logarithmically as a — B, corresponds to the component V.

When | \l(r)B | < € we cannot separate the contribution of the stationai?f point ¢ = 0 from the contribution of
the pole o = B in the asymptotic form of the Ff-integral. The condition | V(r)B | = C defines the boundary of the
transition region.

If we use the asymptotic form of the Ff-integral outside the transition region, which can be done when | V()B |
is sufficiently large (see [6]), formula (5.2) reduces to (4.2), whence assertions A and B follow for points 7, ¢, which
lie outside the transition regions.

It remains to prove that estimate (6.1) holds for the size of the resonance zone inside the transition regions. In
these regions, i.e. for bounded |(7)f}, it is more convenient to use the following expression for the Ff-integral (see [6])

Ff(ro, w/;ﬁ)=exp(iﬁz){—zl;El(if(a‘ﬁ)z)-%F*(w/;(a—ﬁ))]’“-’z(w/;a,*/;ﬁ)

where F* is a function which is the complex conjugate of the Fresnel integral, and

s 25 oo . .
J 7y = - xetiro®) 3. exp(=2ia+/rar) — exp(~2ir(a. - B)or) P
» (\ro,vrB) — g exp(ic?) P o

can be expanded in a convergent series in powers of V(r)(a. — B), V(r)a.. Hence it follows that, inside the transition
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regions, the logarithmically increasing component of the fields W; is given by the function
LI 2, _ 1 3 2
— E, (ir(o. ~ =—E(ir" |®, |t
4nE.(r( 9 41:E’( [ ®g1e™)
which has an order of magnitude not less than unity for small | @32 Hence estimate (6.4) also follows.

7. DEGENERACY OF THE STATIONARY POINT n = ¢ = 0
OF THE FUNCTION &

In the previous analysis we assumed that the stationary point n = { = 0 of the function oo+ M, Ho + )
is non-degenerate, i.e. that the coefficients 4 and B do not vanish in expansion (1.2). This condition is not
always satisfied. We will estimate the size of the resonance zone and the order of increase in W, as ¢ — oo for
the case when the stationary point is degenerate. To fix our ideas we will put 4 = 0 in expansion (1.2).

In subsequent calculations we will omit terms which have no effect on the final estimates.

Assuming G = 1 in (1.3) we carry out the mtegratlon over { in the inner integral and we express the
integral over 7 in terms of the Airy function. It is convenient to separate the dimensional factor I:
from the function W

Then W will be a dimensioniess function of ¢, X, y

2%\ B]
13Cy%
r’sin?¢  D*’sin’ ¢ . Dr? cos @sin
4Bt T72B°C*? 6BCt

o ¢ . rcosQ qr sin’ ¢ |
xpimsign B/ 4) exp(»sm)m{(m)% v );%

S() =~

where r, @ are the polar coordinates (2.1). Since the critical directions @, by (6.2), approach x7/2 as
A - 0, when 4 = 0 the critical directions are the directions /2.

We will estimate the asymptotic form of W and the size of the resonance zone for fixed ¢ # *n/2
and when ¢ = *x/2, More exactly, we will estimate, for fixed M, the dimensions of the neighbourhood
of zero inside which | W | = M.

When ¢ # n/2andr =, ¢ = grsin (p/(pcoscp) we can neglect the second term in the argument of the
Airy function. Changing to the integration variable & = | pxt~'?|, we obtain

W= 6n7% | B| exp[nisign B/ 41
13c1#

H®) =81 | exp{zS[(px/&)anAz(—éslgne)gg

10l

H-GC)y %153

Since H(0) approaches a finite limit as & — 0, the function W increases as ¢S as t — o.
We will estimate the size of the resonance zone, i.e. the region in which W = M. This region is
determined by the values of x for which

H-GO 5155~ MICPH B Y rh =1
Using the asymptotic form of the Airy function when | § | > 1, we obtain that when |0 | > 1
o
H(@®) = R

0% 2.%
D) nexp(—é-e ), 08>0
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Hence, for fixed ¢ # *n/2 and r > 1 we obtain for the size of the resonance zone

) 6M Y BHCH ¥ when sign =signC
X, |=r,lcosp]= (7.1)

(.‘S’C)%t,‘}é when signx =-signC)

This asymptotic form is inapplicable when y > x. We will estimate the size of the resonance zone
whenx = 0. This estimate has a different form when D # 0 and D = 0. Suppose first that D = 0. Then,
changing to the integration variable & = gy*t™*° we obtain

7o / Jj ( misign B ; %T(qﬁzt—% ))
2|3C)? 4

T@) =04 | 5165 1 AiEsign0)- %
i8| g%

It can be seen that on the y axis the order of increase of W as t — c is the same as when x > 1 and has
a lower bound | x/y |.

We will estimate the size of the resonance zone along the y axis. When | 6 | > 1 the function 7(0)
and has the same asymptotic form as the function H(6). Hence, we obtain for the size of the resonance
zone along the y axis, i.e. when ¢ = *n/2

o M P B e b L g<o
rz=|yl~ 5y (7.2)
lql 7273, g>0

When D = 0 and x = 0 we have

7o 2n% [ B] explnisign B/ 4] A% (2
|13C |Z 4Bt

HOBTTA f exp[—i€ sign e]—"%
181 134

The function | 7(8) | =~ | 8 | when | 0 | > 1, and hence we obtain the following relation for the size
of the resonance zone along the y axis

rz =1 § |~ 22 AI0)3C) #(n | B M Verke (1.3)

As was shown in Section 6, for the case of a non-degenerate stationary point the size of the resonance
zone in the critical direction was ¢® times greater than in a direction differing from the resonance
direction. It can be seen from the estimates obtained that for the case of a degenerate statnonarg /‘Pomt
when two critical directions merge, the ratio of these dimensions increases more rapidly—as ¢

8. THE THREE-DIMENSIONAL PROBLEM

We will outline the construction of the asymptotic form of the far field in the case of resonance for the three-
dimensional problem. In the three-dimensional case the analogue of (1.3) is the expression

W@, %,5.%) =de1
0
J = [[fG.&,v)expi(-nE - L3 — v + (.8, v))dndldy (8.1)

where

BM.L7) =0k +1, Ho +§, &g +71)~ 0o, 10.E0) ~NV; ~ LV, ~ 1V,
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The integral J = J(z, r, 6, @) in (8.1) (r, 0, ¢ are spherical coordinates in the space y,z) is of the order of 72
as T — o (see below). Hence, unlike the two-dimensional case the external integral converges as t — o, i.e. a steady
state

W(r.8,0)= [ J(1.,0,0)d1 82)
1]

exists.

In the case of resonance the function &(n, £, y) vanishes at the origin of coordinates together with its first
derivatives. We will assume that the matrix of the second derivatives at this point is non-degenerate. Then, the
directions of the x, y, z axes can be chosen in such a way that the expansion of ®&(n, £, y) in powers of &(n, ¢, y) has
the form

bc2

omL.y)= -——+—+—é—+wa(n£ T+

where w; is a homogeneous polynomial of the third degree, and the dots denote the following terms of the expansion.

‘We will also assume that the function G vanishes outside a fairly small neighbourhood of the origin of coordinates.
Under these conditions, the asymptotic form of J(z, r, 8, @) when t > r > 1 can be calculated by the usual stationary-
phase method

2 3 4
const r r r r
J(1,7,0,0) = expl —irl ~®y +— Py +—D — .
( ) r% p[l{‘t 2 12 3 13 4+{14}JJ (8 3)
Here
0 sinfcos@ sinOsin
@ = (Dt (°°s , LY ‘P) -

k you S 2b 2 ) k=23

and @, is a homogeneous polynomial of the fourth degree of cos 6, sin 8, cos o, sin 0 sin ¢.

Using the expansion of unity (3.3), we can reduce the problem to calculating the asymptotic form of the integral
of the product A(r/t)(, r, 8, ), where A is a cutoff function, which separates the neighbourhood of an infinitely
distant point at which the asymptotic form (8.3) is applicable for J. Making the change of variable & = Vr/t we
obtain

wz(r,e,(p)s“;“ | hED)expir(t®d, +E4D, +E5, +..)dE
r

The asymptotic form of W, as r - o is determined by the values of the functions @,, @3, ®,. If the origin of
coordinates O = (G, (), 0) is a point of extremum of the function &, i.e. the coefficients a, b and ¢ in (8 3) have the
same sign, then ®,(6, o) has a lower bound in modulus for any 8, ¢. Hence, W, is of the order of r ! as r — w, i.e.
of the same order as the components of the far field, due to regular pomts of the surface & = 0 at which grad &
has the direction 8, o (see {1, 2]). If O is a saddle point of the function &, i.e. a comcal point of the surface & =
0, then the asymptotlc form of W, for fixed 6, ¢ and as r — o is of the order of 7! when @, # 0, r~* when @,

0, but @3 = 0 and 7> when @, = @; = 0, but ®, = 0.

We will explain the geometrical meaning of these conditions.

The condition ®, = 0 defines the cone S of critical directions 8, ¢ for which the plane  ncos8 + {sinfcos¢ +
ysin®sing = 0 is touched at the point O by the surface @ = 0. If ®; changes sign on the cone S, then there are
directions 6;, ¢; on this cone for which ®; = 0. We will call these directions supercritical directions. For these
directions the plane X comes in contact with the surface @ = 0 at the point O. In general, the function ®, does
not vanish in supercritical dlrectlons

Hence, W, is of the order of r~ 1 for directions 6, ¢ which differ from the critical dll'CCthl’lS, 1s of the order of

¥ for critical directions which differ from the supercritical directions, and is of the order of % for supercritical
dlrectlons

This asymptotic form is non-uniform, i.e. it is inapplicable for directions 6, ¢ close to the critical and supercritical
directions respectively. In the first case, i.e. for small @, and for @5 having a lower bound in modulus, the model
integral describing the uniform asymptotic form W, is the integral

B=r 10y K | expi(of? +E*sign @y, o= r¥, |0, [

which reduces to the Pearcey integral [7].
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Similarly, in the neighbourhood of a supercritical direction, i.e. directions in which @, and @; are small and the

function @, has a lower bound in modulus, the model integral is the integral

Jy=r 510,14 T expi(ok? +BE* +£5 signd, )k

a=rB0, 10,5, p=rhoyj0,

It reduces to the generalized Airy functions introduced in [8].
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